A unitary similarity transform of a normal matrix to complex symmetric form

نویسنده

  • Raf Vandebril
چکیده

In this article a new unitary similarity transformation of a normal matrix to complex symmetric form will be discussed. A constructive proof as well as some properties and examples will be given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On tridiagonal matrices unitarily equivalent to normal matrices

In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied. It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its superand subdiagonal elements. The corresponding elements of the superand subdiagonal will have the same absolute val...

متن کامل

ON CONEIGENVALUES OF A COMPLEX SQUARE MATRIX

In this paper, we show that a matrix A in Mn(C) that has n coneigenvectors, where coneigenvaluesassociated with them are distinct, is condiagonalizable. And also show that if allconeigenvalues of conjugate-normal matrix A be real, then it is symmetric.  

متن کامل

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

Fractional discrete Fourier transform of type IV based on the eigenanalysis of a nearly tridiagonal matrix

a Nearly Tridiagonal Matrix Magdy Tawfik Hanna1 ABSTRACT A fully-fledged definition for the fractional discrete Fourier transform of type IV (FDFT-IV) is presented and shown to outperform the simple definition of the FDFT-IV which is proved to be just a linear combination of the signal, its DFT-IV and their flipped versions. This definition heavily depends on the availability of orthonormal eig...

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2011